Examinando por Autor "Rojas-Flores, Segundo"
Mostrando 1 - 20 de 20
- Resultados por página
- Opciones de ordenación
Publicación Acceso abierto An Analysis of Global Trends from 1990 to 2022 of Microbial Fuel Cells: A Bibliometric Analysis(MDPI, 2022-02-16) Rojas-Flores, Segundo; Ramirez-Asis, Edwin; Delgado-Caramutti, Jorge; Nazario-Naveda, Renny; Gallozzo-Cardenas, Moisés; Diaz, Félix; Delfin-Narcizo, DanielMicrobial fuel cells have undergone several modifications since their creation, mainly due to the different substrates that can be used as fuel for the generation of electrical energy. In this research, a deep and updated analysis of the characteristics of the literature published in the Scopus database from 1990 to 30 December 2022 has been carried out, finding 7055 documents indexed. The most used keywords are microbial fuel cells, performance, and electricity generation. From 2011 to the present, 5289 article-type documents were published; the article entitled “Microbial Fuel Cells: Methodology and Technology” by Logan B. E. et al., 2006 from Pennsylvania State University, USA in the Environmental Science and Technology journal of the ACS publisher was the most cited (4496 citations). On the other hand, in recent years, Chinese universities have begun to produce and highlight a number of documents positioning in the top ten, with six universities having the greatest presence in publications and as the country with the highest number of published and indexed documents (2773) in Scopus. Research on microbial fuel cells tends to grow, with China as a leading country on the subject, written by the author Wang X. It is observed that the new cell research trends deal with the modification and fabrication of electrodes with nanomaterials in order to improve their power and reduce costs to show their viability on a larger scale.Publicación Acceso abierto Electric Current Generation by Increasing Sucrose in Papaya Waste in Microbial Fuel Cells(MDPI, 2022-08-15) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Benites, Santiago M.; Delfín-Narciso, Daniel; Angelats-Silva, Luis; Díaz , Felix; Cabanillas-Chirinos, Luis; Gallozzo Cardenas, Moises“The accelerated increase in energy consumption by human activity has generated an increase in the search for new energies that do not pollute the environment, due to this, microbial fuel cells are shown as a promising technology. The objective of this research was to observe the influence on the generation of bioelectricity of sucrose, with different percentages (0%, 5%, 10% and 20%), in papaya waste using microbial fuel cells (MFCs). It was possible to generate voltage and current peaks of 0.955 V and 5.079 mA for the cell with 20% sucrose, which operated at an optimal pH of 4.98 on day fifteen. In the same way, the internal resistance values of all the cells were influenced by the increase in sucrose, showing that the cell without sucrose was 0.1952 ± 0.00214 KΩ and with 20% it was 0.044306 ± 0.0014 KΩ. The maximum power density was 583.09 mW/cm2 at a current density of 407.13 A/cm2 and with a peak voltage of 910.94 mV, while phenolic compounds are the ones with the greatest presence in the FTIR (Fourier transform infrared spectroscopy) absorbance spectrum. We were able to molecularly identify the species Achromobacter xylosoxidans (99.32%), Acinetobacter bereziniae (99.93%) and Stenotrophomonas maltophilia (100%) present in the anode electrode of the MFCs. This research gives a novel use for sucrose to increase the energy values in a microbial fuel cell, improving the existing ones and generating a novel way of generating electricity that is friendly to the environment.“Publicación Acceso abierto Electric Current Generation by Increasing Sucrose in Papaya Waste in Microbial Fuel Cells(MDPI, 2022-08-15) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Benites, Santiago M.; Delfín-Narciso, Daniel; Angelats-Silva, Luis; Díaz, Felix; Cabanillas-Chirinos, Luis; Gallozzo Cardenas, Moises“The accelerated increase in energy consumption by human activity has generated an increase in the search for new energies that do not pollute the environment, due to this, microbial fuel cells are shown as a promising technology. The objective of this research was to observe the influence on the generation of bioelectricity of sucrose, with different percentages (0%, 5%, 10% and 20%), in papaya waste using microbial fuel cells (MFCs). It was possible to generate voltage and current peaks of 0.955 V and 5.079 mA for the cell with 20% sucrose, which operated at an optimal pH of 4.98 on day fifteen. In the same way, the internal resistance values of all the cells were influenced by the increase in sucrose, showing that the cell without sucrose was 0.1952 ± 0.00214 KΩ and with 20% it was 0.044306 ± 0.0014 KΩ. The maximum power density was 583.09 mW/cm2 at a current density of 407.13 A/cm2 and with a peak voltage of 910.94 mV, while phenolic compounds are the ones with the greatest presence in the FTIR (Fourier transform infrared spectroscopy) absorbance spectrum. We were able to molecularly identify the species Achromobacter xylosoxidans (99.32%), Acinetobacter bereziniae (99.93%) and Stenotrophomonas maltophilia (100%) present in the anode electrode of the MFCs. This research gives a novel use for sucrose to increase the energy values in a microbial fuel cell, improving the existing ones and generating a novel way of generating electricity that is friendly to the environment.“Publicación Acceso abierto “Generation of Electricity Through Papaya Waste at Different pH “(Kauno Technologijos Universitetas, 2022-10) Rojas-Flores, Segundo; De La Cruz–Noriega, Magaly; Benites, Santiago M.; Delfín-Narciso, Daniel; Angelats-Silva, Luis; Díaz, Felix; Cabanillas-Chirinos, Luis“A large amount of fruit waste is being a great environmental and social problem due to a lack of adequate storage. Among the most abundant waste is papaya, due to its high consumption in various varieties. These wastes can generate bioelectricity through organic waste, being an important parameter the pH. In this research, lowcost laboratory-scale microbial fuel cells were fabricated, using papaya waste as fuel at different pH (4, 5.73, 7, and 9) to obtain the optimum operating pH. It was possible to observe the maximum values of electric current and voltage of 17.97 mA and 1.02 V on days 16 and 14, in the cell with pH 7; while the cell with pH was the one that showed the lowest values. The electrical conductivity values increased from the first day, observing a maximum peak of 172.50 mS/cm for the cell with pH 7. However, the internal resistance values were low, the maximum value being for the cell with pH 4 (234.61 ± 34 Ω) and the minimum for the cell with pH 7 (46.543 ± 3.6 Ω). In the same way, the maximum power density was for the cell with pH 7 of approximately 645.74 ± 33.64 mW/cm2 and a current density of 5.42 A/cm2 . “Publicación Acceso abierto Green Energy Generated in Single-Chamber Microbial Fuel Cells Using Tomato Waste(MDPI, 2023-07-03) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirino, Luis; Benites, Santiago M.; Nazario-Naveda, Renny; Delfín-Narciso, Daniel; Gallozzo-Cardena, Moisés; Murga-Torres, Emzon; Rojas-Villacorta, Walter; Diaz, FélixThis research used tomato waste as a substrate (fuel) in Single Chamber-Microbial Fuel Cells (scMFC) on a small scale. The electrochemical properties were monitored, the functional groups of the substrate were analyzed by Fourier Transform Infrared Spectrophotometry (FTIR) and a microbiological analysis was performed on the electrodes in order to identify the microorganisms responsible for the electrochemical process. The results show voltage peaks and an electrical current of 3.647 ± 0.157 mA and 0.957 ± 0.246 V. A pH of 5.32 ± 0.26 was measured in the substrate with an electrical current conductivity of 148,701 ± 5849 mS/cm and an internal resistance (Rint) of 77. 517 ± 8.541 Ω. The maximum power density (PD) displayed was 264.72 ± 3.54 mW/cm2 at a current density (CD) of 4.388 A/cm2. On the other hand, the FTIR spectrum showed a more intense decrease in its peaks, with the compound belonging to the phenolic groups being the most affected at 3361 cm−1. The micrographs show the formation of a porous biofilm where molecular identification allowed the identification of two bacteria (Proteus vulgaris and Proteus vulgaris) and a yeast (Yarrowia lipolytica) with 100% identity. The data found show the potential of this waste as a source of fuel for the generation of an electric current in a sustainable and environmentally friendly way, generating in the near future a mechanism for the reuse of waste in a beneficial way for farmers, communities and agro-industrial companies.Publicación Acceso abierto Green Energy Generated in Single-Chamber Microbial Fuel Cells Using Tomato Waste(Multidisciplinary Digital Publishing Institute (MDPI), 2023-07-03) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirinos, Luis; Benites, Santiago M.; Nazario-Naveda, Renny; Delfín-Narciso, Daniel; Gallozzo-Cardenas, Moisés; Diaz, Félix; Murga-Torres, Emzon; Rojas-Villacorta, Walter“This research used tomato waste as a substrate (fuel) in Single Chamber-Microbial Fuel Cells (scMFC) on a small scale. The electrochemical properties were monitored, the functional groups of the substrate were analyzed by Fourier Transform Infrared Spectrophotometry (FTIR) and a microbiological analysis was performed on the electrodes in order to identify the microorganisms responsible for the electrochemical process. The results show voltage peaks and an electrical current of 3.647 ± 0.157 mA and 0.957 ± 0.246 V. A pH of 5.32 ± 0.26 was measured in the substrate with an electrical current conductivity of 148,701 ± 5849 mS/cm and an internal resistance (Rint) of 77. 517 ± 8.541 Ω. The maximum power density (PD) displayed was 264.72 ± 3.54 mW/cm2 at a current density (CD) of 4.388 A/cm2 . On the other hand, the FTIR spectrum showed a more intense decrease in its peaks, with the compound belonging to the phenolic groups being the most affected at 3361 cm−1 . The micrographs show the formation of a porous biofilm where molecular identification allowed the identification of two bacteria (Proteus vulgaris and Proteus vulgaris) and a yeast (Yarrowia lipolytica) with 100% identity. The data found show the potential of this waste as a source of fuel for the generation of an electric current in a sustainable and environmentally friendly way, generating in the near future a mechanism for the reuse of waste in a beneficial way for farmers, communities and agro-industrial companies.“Publicación Acceso abierto Impact of Dragon Fruit Waste in Microbial Fuel Cells to Generate Friendly Electric Energy(MDPI, 2023-03-27) Rojas-Flores, Segundo; Santiago, M. Benites; De La Cruz-Noriega, Magaly; Vives-Garnique, Juan; Milly Otiniano, Nélida; Rojas-Villacorta, Walter; Gallozzo-Cardenas, Moisés; Delfín-Narciso, Daniel; Díaz, FélixPollution generated by the misuse of large amounts of fruit and vegetable waste has become a major environmental and social problem for developing countries due to the absence of specialized collection centers for this type of waste. This research aims to generate electricity in an eco-friendly way using red dragon fruit (pitahaya) waste as the fuel in single-chamber microbial fuel cells on a laboratory scale using zinc and copper electrodes. It was possible to generate voltage and current peaks of 0.46 ± 0.03 V and 2.86 ± 0.07 mA, respectively, with an optimum operating pH of 4.22 ± 0.09 and an electrical conductivity of 175.86 ± 4.72 mS/cm at 8 °Brix until the tenth day of monitoring. An internal resistance of 75.58 ± 5.89 Ω was also calculated with a maximum power density of 304.33 ± 16.51 mW/cm2 at a current density of 5.06 A/cm2, while the FTIR spectra showed a decrease in the initial compounds and endings, especially at the 3331 cm−1 peaks of the O–H bonds. Finally, the yeast-like fungus Geotrichum candidum was molecularly identified (99.59%). This research will provide great opportunities for the generation of renewable energy using biomass as fuel through electronic devices with great potential to generate electricity.Publicación Acceso abierto “Impact of Dragon Fruit Waste in Microbial Fuel Cells to Generate Friendly Electric Energy“(MDPI, 2023-04-27) Rojas-Flores, Segundo; Santiago M., Benites; De La Cruz-Noriega, Magaly; Vives-Garnique, Juan; Milly Otiniano, Nélida; Rojas-Villacorta, Walter; Gallozzo-Cardenas, Moisés; Delfín-Narciso, Daniel; Díaz, Félix“Abstract: Pollution generated by the misuse of large amounts of fruit and vegetable waste has become a major environmental and social problem for developing countries due to the absence of specialized collection centers for this type of waste. This research aims to generate electricity in an eco-friendly way using red dragon fruit (pitahaya) waste as the fuel in single-chamber microbial fuel cells on a laboratory scale using zinc and copper electrodes. It was possible to generate voltage and current peaks of 0.46 ± 0.03 V and 2.86 ± 0.07 mA, respectively, with an optimum operating pH of 4.22 ± 0.09 and an electrical conductivity of 175.86 ± 4.72 mS/cm at 8 ◦Brix until the tenth day of monitoring. An internal resistance of 75.58 ± 5.89 Ω was also calculated with a maximum power density of 304.33 ± 16.51 mW/cm2 at a current density of 5.06 A/cm2 , while the FTIR spectra showed a decrease in the initial compounds and endings, especially at the 3331 cm−1 peaks of the O–H bonds. Finally, the yeast-like fungus Geotrichum candidum was molecularly identified (99.59%). This research will provide great opportunities for the generation of renewable energy using biomass as fuel through electronic devices with great potential to generate electricity.“Publicación Acceso abierto “Impact of Dragon Fruit Waste in Microbial Fuel Cells to Generate Friendly Electric Energy“(MDPI, 2023-04-27) Rojas-Flores, Segundo; Benites, Santiago M.; De La Cruz-Noriega, Magaly; Vives-Garnique, Juan; Otiniano, Nélida Milly; Rojas-Villacorta, Walter; Gallozzo-Cardenas, Moisés; Delfín-Narciso, Daniel; Díaz, Félix“Abstract: Pollution generated by the misuse of large amounts of fruit and vegetable waste has become a major environmental and social problem for developing countries due to the absence of specialized collection centers for this type of waste. This research aims to generate electricity in an eco-friendly way using red dragon fruit (pitahaya) waste as the fuel in single-chamber microbial fuel cells on a laboratory scale using zinc and copper electrodes. It was possible to generate voltage and current peaks of 0.46 ± 0.03 V and 2.86 ± 0.07 mA, respectively, with an optimum operating pH of 4.22 ± 0.09 and an electrical conductivity of 175.86 ± 4.72 mS/cm at 8 ◦Brix until the tenth day of monitoring. An internal resistance of 75.58 ± 5.89 Ω was also calculated with a maximum power density of 304.33 ± 16.51 mW/cm2 at a current density of 5.06 A/cm2 , while the FTIR spectra showed a decrease in the initial compounds and endings, especially at the 3331 cm−1 peaks of the O–H bonds. Finally, the yeast-like fungus Geotrichum candidum was molecularly identified (99.59%). This research will provide great opportunities for the generation of renewable energy using biomass as fuel through electronic devices with great potential to generate electricity.“Publicación Acceso abierto Increase in Electrical Parameters Using Sucrose in Tomato Waste(MDPI, 2022-07-16) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Benites, Santiago M.; Delfín-Narciso, Daniel; Angelats-Silva, Luis; Felix, Díaz; Cabanillas-Chirinos, Luis“The use of organic waste as fuel for energy generation will reduce the great environmental problems currently caused by the consumption of fossil sources, giving agribusiness companies a profitable way to use their waste. In this research, tomato waste with different percentages of sucrose (0-target, 5, 10, and 20%) was used in microbial fuel cells manufactured on a laboratory scale with zinc and copper electrodes, managing to generate maximum peaks of voltage and a current of 1.08 V and 6.67 mA in the cell with 20% sucrose, in which it was observed that the optimum operating pH was 5.29, while the MFC with 0% (target) sucrose generated 0.91 V and 3.12 A on day 13 with a similar pH, even though all the cells worked in an acidic pH. Likewise, the cell with 20% sucrose had the lowest internal resistance (0.148541 ± 0.012361 KΩ) and the highest power density (224.77 mW/cm2 ) at a current density of 4.43 mA/cm2 , while the MFC with 0% sucrose generated 160.52 mW/cm2 and 4.38 mA/cm2 of power density and current density, respectively, with an internal resistance of 0.34116 ± 0.2914 KΩ. In this sense, the FTIR (Fourier-transform infrared spectroscopy) of all the substrates used showed a high content of phenolic compounds and carboxylate acids. Finally, the MFCs were connected in a series and managed to generate a voltage of 3.43 V, enough to light an LED (green). These results give great hope to companies and society that, in the near future, this technology can be taken to a larger scale.“Publicación Acceso abierto Microbial Biosensors for Wastewater Monitoring: Mini-Review(MDPI, 2022-10-04) Rojas-Villacorta, Walter; Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Chinchay Espino, Héctor; Diaz, Felix; Gallozzo Cardenas, Moises“Research on the use of microbial biosensors for monitoring wastewater contaminants is a topic that covers few publications compared to their applicability in other fields, such as biomedical research. For this reason, a systematic analysis of the topic was carried out, for which research-type articles were reviewed during the period 2012 to September 2022. For this, different search platforms were used, including PubMed, ScienceDirect, Springer Link, and Scopus, and through the use of search equations a relevant bibliography was located. After that, the research articles were selected based on exclusion criteria. As a result, it was found that, of the 126 articles, only 16 articles were strictly related to the topic, since there was a duplication of articles among the different databases. It was possible to demonstrate the usefulness of microorganisms as components of biosensors to monitor BOD, heavy metals, and inorganic contaminants in wastewater that also had a high sensitivity. Additionally, recombinant DNA techniques were shown to improve the performance of this type of biosensor and can finally be coupled to other emerging technologies, such as microbial fuel cells (MFCs). In conclusion, it was established that microbial biosensors have high acceptability and monitoring characteristics that make them a useful tool to detect low concentrations of pollutants in wastewater that can also provide results in real-time, thus generating forms of ecological safety and social responsibility in companies where wastewater is generated.“Publicación Acceso abierto Microbial Biosensors for Wastewater Monitoring: Mini-Review(MDPI, 2022-10-04) Rojas-Villacorta, Walter; Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Chinchay Espino, Héctor; Diaz, Felix; Gallozzo Cardenas, Moises“Research on the use of microbial biosensors for monitoring wastewater contaminants is a topic that covers few publications compared to their applicability in other fields, such as biomedical research. For this reason, a systematic analysis of the topic was carried out, for which research-type articles were reviewed during the period 2012 to September 2022. For this, different search platforms were used, including PubMed, ScienceDirect, Springer Link, and Scopus, and through the use of search equations a relevant bibliography was located. After that, the research articles were selected based on exclusion criteria. As a result, it was found that, of the 126 articles, only 16 articles were strictly related to the topic, since there was a duplication of articles among the different databases. It was possible to demonstrate the usefulness of microorganisms as components of biosensors to monitor BOD, heavy metals, and inorganic contaminants in wastewater that also had a high sensitivity. Additionally, recombinant DNA techniques were shown to improve the performance of this type of biosensor and can finally be coupled to other emerging technologies, such as microbial fuel cells (MFCs). In conclusion, it was established that microbial biosensors have high acceptability and monitoring characteristics that make them a useful tool to detect low concentrations of pollutants in wastewater that can also provide results in real-time, thus generating forms of ecological safety and social responsibility in companies where wastewater is generated.“Publicación Acceso abierto Potential Use of Coriander Waste as Fuel for the Generation of Electric Power(MDPI, 2023-01-04) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirinos, Luis; Nazario-Naveda, Renny; Gallozzo-Cardenas, Moisés; Diaz, Félix; Murga-Torres, Emzon“The increase in the population and its need to produce food has caused the level of contamination by organic waste to increase exponentially in recent years. Innovative methods have been proposed for the use of this waste and thus to mitigate its impact. One of these is to use it as fuel in microbial fuel cells to generate electricity. This research aims to generate bioelectricity using coriander waste in microbial fuel cells. The maximum voltage and current observed were 0.882 ± 0.154 V and 2.287 ± 0.072 mA on the seventh and tenth day, respectively, these values were obtained working at an optimum operating pH of 3.9 ± 0.16 and with an electrical conductivity of 160.42 ± 4.54 mS/cm. The internal resistance observed in the cells was 75.581 ± 5.892 Ω, with a power density of 304.325 ± 16.51 mW/cm2 at 5.06 A/cm2 current density. While the intensity of the final FTIR (Fourier transform infrared spectroscopy) spectrum peaks decreased compared to the initial one, likewise, with a percentage of identity, it was possible to attribute 98.97, 99.39, and 100% to the species Alcaligenes faecalis, Alcaligenes faecali, and Pseudomonas aeruginosa. Finally, the cells were connected in series, managing to turn on an LED light (red) with the 2.61 V generated. This research provides an innovative and environmentally friendly way that companies and farmers can use to reuse their waste“Publicación Acceso abierto Preliminary Study of Bioelectricity Generation Using Lettuce Waste as Substrate by Microbial Fuel Cells(MDPI, 2023-06-30) Rojas-Villacorta, Walter; Rojas-Flores, Segundo; Benites, Santiago M.; Nazario-Naved, Renny; Romero, Cecilia V.; Gallozzo-Cardenas, Moisés; Delfín-Narciso, Daniel; Díaz, Félix; Murga-Torres, Emzon“Agricultural waste negatively impacts the environment and generates economic difficulties for agro-industrial companies and farmers. As a result, it is necessary for an eco-friendly and sustainable alternative to managing this type of waste. Therefore, the research aimed to investigate lettuce waste as an alternative substrate to generate bioelectricity in single-chamber microbial fuel cells (scMFCs). It was possible to report voltage and electric current peaks of 0.959 ± 0.026 V and 5.697 ± 0.065 mA on the fourteenth day, values that were attained with an optimum pH of 7.867 ± 0.147 and with an electrical conductivity of 118.964 ± 8.888 mS/cm. Moreover, as time passed the values began to decline slowly. The calculated value of maximum power density was 378.145 ± 5.417 mW/cm2 whose current density was 5.965 A/cm2 , while the internal resistance reported using Ohm’s Law was 87.594 ± 6.226 Ω. Finally, it was possible to identify the Stenotrophomonas maltophilia bacterium (99.59%) on a molecular scale, as one of the microorganisms present in the anodic biofilm. The three microbial fuel cells were connected in series and demonstrated that they were capable of lighting an LED bulb, with a voltage of 2.18 V.“Publicación Acceso abierto Preliminary Study of Bioelectricity Generation Using Lettuce Waste as Substrate by Microbial Fuel Cells(MDPI, 2023-06-30) Rojas-Villacorta, Walter; Rojas-Flores, Segundo; Benites, Santiago M.; Nazario-Naveda, Renny; Romero, Cecilia V.; Gallozzo-Cardenas, Moisés; Delfín-Narciso, Daniel; Díaz, Félix; Murga-Torres, EmzonAgricultural waste negatively impacts the environment and generates economic difficulties for agro-industrial companies and farmers. As a result, it is necessary for an eco-friendly and sustainable alternative to managing this type of waste. Therefore, the research aimed to investigate lettuce waste as an alternative substrate to generate bioelectricity in single-chamber microbial fuel cells (scMFCs). It was possible to report voltage and electric current peaks of 0.959 ± 0.026 V and 5.697 ± 0.065 mA on the fourteenth day, values that were attained with an optimum pH of 7.867 ± 0.147 and with an electrical conductivity of 118.964 ± 8.888 mS/cm. Moreover, as time passed the values began to decline slowly. The calculated value of maximum power density was 378.145 ± 5.417 mW/cm2 whose current density was 5.965 A/cm2 , while the internal resistance reported using Ohm’s Law was 87.594 ± 6.226 Ω. Finally, it was possible to identify the Stenotrophomonas maltophilia bacterium (99.59%) on a molecular scale, as one of the microorganisms present in the anodic biofilm. The three microbial fuel cells were connected in series and demonstrated that they were capable of lighting an LED bulb, with a voltage of 2.18 V.Publicación Acceso abierto Use of Kiwi Waste as Fuel in MFC and Its Potential for Use as Renewable Energy(MDPI, 2023-04-12) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirinos, Luis; Benites, Santiago M.; Nazario-Naveda, Renny; Delfín-Narciso, Daniel; Gallozzo-Cardemas, Moisés; Murga-Torres, Emzon; Rojas-Villacorta, Walter; Díaz, FelixThis research aimed to use kiwi waste as fuel to generate bioelectricity through microbial fuel cells. It was possible to generate an electrical current and voltage peaks of 3.807 ± 0.102 mA and 0.993 ± 0.061 V on day 11, showing an electrical conductivity of 189.82 ± 3.029 mS/cm and an optimum operating pH of 5.966 ± 0.121. The internal resistance of the cells was calculated using Ohm’s Law, resulting in a value of 14.957 ± 0.394 Ω, while the maximum power density was 212.68 ± 26.84 mW/m2 at a current density of 4.506 A/cm2. Through the analysis of the FTIR spectra carried out on the substrate, a decrease in the characteristic organic peaks was observed due to their decomposition during the electricity-generation process. In addition, it was possible to molecularly identify the bacteria Comamonas testosteroni, Sphingobacterium sp., and Stenotropho-monas maltophila adhered to the anodized biofilm. Finally, the capacity of this residue to generate bioelectricity was demonstrated by lighting an LED bulb with a voltage of 2.85 V.Publicación Acceso abierto Use of Kiwi Waste as Fuel in MFC and Its Potential for Use as Renewable Energy(MDPI, 2023-04-08) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirinos, Luis; Benites, Santiago M.; Nazario-Naveda, Renny; Delfín-Narciso, Daniel; Gallozzo-Cardemas, Moisés; Díaz, Felix; Murga-Torres, Emzon; Rojas-Villacorta, WalterThis research aimed to use kiwi waste as fuel to generate bioelectricity through microbial fuel cells. It was possible to generate an electrical current and voltage peaks of 3.807 ± 0.102 mA and 0.993 ± 0.061 V on day 11, showing an electrical conductivity of 189.82 ± 3.029 mS/cm and an optimum operating pH of 5.966 ± 0.121. The internal resistance of the cells was calculated using Ohm’s Law, resulting in a value of 14.957 ± 0.394 Ω, while the maximum power density was 212.68 ± 26.84 mW/m2 at a current density of 4.506 A/cm2. Through the analysis of the FTIR spectra carried out on the substrate, a decrease in the characteristic organic peaks was observed due to their decomposition during the electricity-generation process. In addition, it was possible to molecularly identify the bacteria Comamonas testosteroni, Sphingobacterium sp., and Stenotropho-monas maltophila adhered to the anodized biofilm. Finally, the capacity of this residue to generate bioelectricity was demonstrated by lighting an LED bulb with a voltage of 2.85 V.Publicación Acceso abierto Use of Pineapple Waste as Fuel in Microbial Fuel Cell for the Generation of Bioelectricity(MDPI, 2022-10-31) Rojas-Flores, Segundo; Nazario-Naveda, Renny; Benites, Santiago M.; Gallozzo-Cardenas, Moisés; Delfín-Narciso, Daniel; Díaz, FélixThe excessive use of fossil sources for the generation of electrical energy and the increase in different organic wastes have caused great damage to the environment; these problems have promoted new ways of generating electricity in an eco-friendly manner using organic waste. In this sense, this research uses single-chamber microbial fuel cells with zinc and copper as electrodes and pineapple waste as fuel (substrate). Current and voltage peaks of 4.95667 ± 0.54775 mA and 0.99 ± 0.03 V were generated on days 16 and 20, respectively, with the substrate operating at an acid pH of 5.21 ± 0.18 and an electrical conductivity of 145.16 ± 9.86 mS/cm at two degrees Brix. Thus, it was also found that the internal resistance of the cells was 865.845 ± 4.726 Ω, and a maximum power density of 513.99 ± 6.54 mW/m2 was generated at a current density of 6.123 A/m2, and the final FTIR spectrum showed a clear decrease in the initial transmittance peaks. Finally, from the biofilm formed on the anodic electrode, it was possible to molecularly identify the yeast Wickerhamomyces anomalus with 99.82% accuracy. In this way, this research provides a method that companies exporting and importing this fruit may use to generate electrical energy from its waste.Publicación Acceso abierto Use of Pineapple Waste as Fuel in Microbial Fuel Cell for the Generation of Bioelectricity(MDPI, 2022-12-01) Rojas-Flores, Segundo; Nazario-Naveda, Renny; Benites, Santiago M.; Gallozzo-Cardenas, Moisés; Delfín-Narciso, Daniel; Díaz, FélixThe excessive use of fossil sources for the generation of electrical energy and the increase in different organic wastes have caused great damage to the environment; these problems have promoted new ways of generating electricity in an eco-friendly manner using organic waste. In this sense, this research uses single-chamber microbial fuel cells with zinc and copper as electrodes and pineapple waste as fuel (substrate). Current and voltage peaks of 4.95667 ± 0.54775 mA and 0.99 ± 0.03 V were generated on days 16 and 20, respectively, with the substrate operating at an acid pH of 5.21 ± 0.18 and an electrical conductivity of 145.16 ± 9.86 mS/cm at two degrees Brix. Thus, it was also found that the internal resistance of the cells was 865.845 ± 4.726 Ω, and a maximum power density of 513.99 ± 6.54 mW/m2 was generated at a current density of 6.123 A/m2, and the final FTIR spectrum showed a clear decrease in the initial transmittance peaks. Finally, from the biofilm formed on the anodic electrode, it was possible to molecularly identify the yeast Wickerhamomyces anomalus with 99.82% accuracy. In this way, this research provides a method that companies exporting and importing this fruit may use to generate electrical energy from its waste.Publicación Acceso abierto “Use of Tangerine Waste as Fuel for the Generation of Electric Current“(MDPI, 2023-02-15) Rojas-Flores, Segundo; Cabanillas-Chirinos, Luis; Nazario-Naveda, Renny; Gallozzo-Cardenas, Moisés; Diaz, Félix; Delfin-Narciso, Daniel; Rojas-Villacorta, Walter“: Fruit waste has increased exponentially worldwide, within which tangerine is one of those that generates a greater amount of organic waste, which is currently not fully used. On the other hand, microbial fuel cells (MFCs) are presented as an opportunity to take advantage of organic waste to generate electricity, which is why the main objective of this research is to generate bioelectricity using tangerine waste as a substrate in microbial fuel cells using zinc and copper electrodes. It was possible to generate current and voltage peaks of 1.43973 ± 0.05568 mA and 1.191 ± 0.035 V on days eighteen and seventeen, respectively, operating with an optimum pH of 4.78 ± 0.46 and with electrical conductivity of the substrate of 140.07 ± 3.51 mS/cm, while the Brix degrees gradually decreased until the last day. The internal resistance determined was 65.378 ± 1.967 Ω, while the maximum power density was 475.32 ± 24.56 mW/cm2 at a current density of 5.539 A/cm2 with a peak voltage of 1024.12 ± 25.16 mV. The bacterium (Serratia fonticola) and yeasts (Rhodotorula mucilaginosa) were identified in the substrate with an identity of 99.57 and 99.50%, respectively. Finally, the cells were connected in series, managing to generate 3.15 V, which allowed the turning on of a red LED light.“
