Publicación:
Predictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2

dc.contributor.authorGarcia-Rios, Victor
dc.contributor.authorMarres-Salhuana, Marieta
dc.contributor.authorSierra-Liñan, Fernando
dc.contributor.authorCabanillas-Carbonell, Michael
dc.date.accessioned2023-10-20T17:14:36Z
dc.date.available2023-10-20T17:14:36Z
dc.date.issued2023-01-30
dc.description.abstractCurrently, type 2 diabetes mellitus is one of the world's most prevalent diseases and has claimed millions of people's lives. The present research aims to know the impact of the use of machine learning in the diagnostic process of type 2 diabetes mellitus and to offer a tool that facilitates the diagnosis of the dis-ease quickly and easily. Different machine learning models were designed and compared, being random forest was the algorithm that generated the model with the best performance (90.43% accuracy), which was integrated into a web platform, working with the PIMA dataset, which was validated by specialists from the Peruvian League for the Fight against Diabetes organization. The result was a decrease of (A) 88.28% in the information collection time, (B) 99.99% in the diagnosis time, (C) 44.42% in the diagnosis cost, and (D) 100% in the level of difficulty, concluding that the application of machine learning can significantly optimize the diagnostic process of type 2 diabetes mellitus.es_ES
dc.formatapplication/pdf
dc.identifier.doi10.11591/ijai.v12.i4.pp1713-1726
dc.identifier.urihttps://hdl.handle.net/20.500.13053/9653
dc.language.isoenges_ES
dc.publisherInstitute of Advanced Engineering and Sciencees_ES
dc.publisher.countryIDNes_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectDiagnosis Machine learning Prediction Random forest Type 2 diabetes mellituses_ES
dc.subject.ocde1.02.00 -- Informática y Ciencias de la Información
dc.titlePredictive machine learning applying cross industry standard process for data mining for the diagnosis of diabetes mellitus type 2es_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
22226-45802-1-PB (1).pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones